Solubility of Lithium Hydroxide in Water and Vapor Pressure of Solutions above 220° F.

ELMER F. STEPHAN and PAUL D. MILLER

Corrosion Research Division, Battelle Memorial Institute, Columbus 1, Ohio

LITHIUM HYDROXIDE is being used as an agent for the control of pH in the primary coolant-water circuits of pressurized nuclear reactors. Basic information on the properties of lithium hydroxide solutions at elevated temperatures is important. For example, both corrosion and heat transfer are related to a buildup of concentrated films of crystalline deposits. Solubility data, therefore, are necessary to help predict the possibility of deposit formation from additions of lithium hydroxide. Similarly, vaporpressure data help to establish the conditions under which concentrated films might occur at steam-blanketed areas. The present study was made to furnish data in each of the areas just mentioned.

APPARATUS AND EXPERIMENTAL PROCEDURES

The apparatus for obtaining the solubility data is schematically shown in Figure 1. The reaction vessel (A)was a standard American Instrument Co. Type 347 stainless steel autoclave with a drop-in nickel liner. The liner, having a capacity of 700 ml., was made of welded nickel sheet. The reaction vessel and heater were rocked 30° from the vertical at ten strokes per minute to agitate the solutions. Two openings for $\frac{1}{4}$ -inch, high-pressure fittings were placed in the head. One opening was fitted for measuring pressures and for evacuating; the other opening was fitted for sampling the supernatant liquid in the chamber. The line leading directly from the head of the autoclave included a valve (V_2) for bleedoff, or evacuation, and a shutoff valve (V_3) . This line led through a spiral to a Crosby Steam Gage Co. Model CD2 dead-weight gage tester (G_1) for measuring the pressure on the system. The condensed vapor from the autoclave was separated from the oil in the gage by a mercury bridge (M). This line also included a 5000-p.s.i. Bourdon-type gage (G_2) and a safety head with a 4200-p.s.i. rupture disk (SH). The outlet from the safety head led into a 1-liter pressure vessel (PV) which would contain the solution, should the temperature or pressure get out of control.

Samples of the liquid were drawn through a pressure tubing line extending through the head of the autoclave down two-thirds of the way into the chamber. A small stainless steel frit (F_1) , having a 5-micron rated opening, was inserted in the end of this tube to filter the supernatant liquid. The sampling tube leading from the autoclave head contained a three-way, Y-type pressure valve (V_1) . This valve was heated by two small plate heaters. Another small stainless steel frit (F_2) was inserted in the sampling line just ahead of the valve (V_1) . This valve permitted attachment of two sample receivers (SA) at the same time.

Lithium hydroxide monohydrate, reagent grade, containing 2.2 weight % lithium carbonate, was used as a starting material. A quantity of the solid reagent was stirred in distilled water for 10 minutes, allowed to settle, and the supernatant liquid was decanted into a polyethylene bottle. This solution (containing about 10 grams of LiOH per 100 grams of water) was run into a measuring buret and then through a column containing Rohm and Haas Amerlite XE154 lithium-form, ion-exchange resin to remove the carbonate. All vents in the solution line were fitted

			•		
840-ml	autoclove	with a	drop-in	nickel liner	

ß	Autoc	lo ve	heater
μ.			inconc.

- C1, C2. Foxboro controllers
- F_1, F_2 . Stainless steel filter
 - G₁. Crosby Steam Gage Co., dead-weight gage tester, Model CD2
 - G_{2} . Bourdon tube gage
- H. Heating mantle M. Mercury bridge
- P. Leeds and Northrup semiprecision potentiometer
- PV. 1-liter pressure vessel
- SA. Sample receivers
- SP. Spiral tube
- SH. Safety head
- T_1, T_2, T_3, T_4 . Thermocouples

 V_1, V_2, V_3, V_4 . Pressure valves

R. Rocker autoclave support

with tubes containing Ascarite to reduce CO_2 contamination. Carbonate could not be detected in the solution from the ion-exchange column by a double indicator titration.

The assembled autoclave was evacuated, and 500 ml. of the lithium hydroxide solution was drawn directly from the ion-exchange column through the sampling valve into the cold autoclave. The solution was heated to 250° F. and concentrated by allowing 400 ml. of condensed water vapor to escape through the valve (V_2). The autoclave was then cooled, 400 ml. of solution was drawn in, the autoclave was reheated, and the water was evaporated. Four successive 400-ml. portions of the solution were added and evaporated. The final 400-ml. portion was not evaporated. At this stage, the autoclave contained approximately 250 grams of purified lithium hydroxide, some in solution and some in crystal form, and 500 grams of water.

Solubility Determinations. Sampling of the supernatant liquid at temperature was accomplished by opening the sampling valve and allowing the vapor pressure of the system to force the liquid through the filters into the sample receiver. The receivers were 300-ml. Erlenmeyer flasks fitted with two-hole rubber stoppers. A stainless steel tube, with a pressure fitting for attaching to the sampling valve, was inserted through one hole in the stopper. This tube extended nearly to the bottom of the flask. The assembled receiver (consisting of flask, stopper, tube, and about 150 ml. of distilled water) was weighed prior to attachment to the sampling valve. About 5 to 7 grams of the supernatant liquid was slowly taken into the cold water in the flask. The receiver was then reweighed and the weight of the sample obtained by difference. The inside of the tube was rinsed into the flask and the total LiOH determined by titrating with standard hydrochloric acid, using a phenolphthalein indicator. Two receivers were used at each sampling, one to receive the purge solution drawn from the line and the other for the sample.

Three different techniques were used to establish equilibrium.

In the first procedure, the solution in contact with the solid LiOH was agitated at temperature for 16 hours before sampling. Samples were taken every 3 hours thereafter, until successive analyses showed that equilibrium had been attained. The temperature was then raised 50° and the procedure repeated.

The second procedure was similar to the first one except that, 1 hour before sampling, 10 grams of water vapor was allowed to escape from the head space above the solution. This effected a concentration of the solution and helped confirm a condition of equilibrium.

In the third procedure, the solution was sampled as the temperature was decreased in 50° intervals from 650° F. Thus, further confirmation of equilibrium conditions could be established.

Since the vapor pressure was too low to force the liquid through the filters at temperatures below 300° F., sampling at these temperatures was accomplished by partially evacuating the sample receiver. The data at 650° F. were obtained without a filter in the sampling line. Temperature and pressure conditions at this point were such that the solution would flash evaporate in the line between the filter and the valve when the valve was opened. The close agreement of the successive samples indicated that any suspended material had settled and only solution came through the valve. Samples could not be obtained at 680° F. with the present experiment arrangements, as the slightest relief of pressure at the valve caused the line to plug.

Vapor-Pressure Determinations. The vapor-pressure determinations were run in a static 1-liter all-nickel autoclave made by Autoclave Engineers.

A temperature-pressure calibration curve for the gage and thermocouple was first determined by using distilled water. The data presented later have been adjusted, using this calibration curve. Control of the heat to the various sections of the autoclave heater was such that a variation of temperature from top to bottom of the autoclave was no greater than ± 1 degree. The dead-weight pressure gage could be read with an accuracy of ± 1 p.s.i. at the low pressures to ± 5 at the high pressures.

The autoclave was filled by a procedure similar to that described for the solubility determinations.

Figure 2. Solubility of lithium hydroxide in water

When vapor-pressure measurements were made on the dilute solutions at increasing temperatures, the solution was withdrawn to maintain a minimum head space in the autoclave as expansion occurred. In the determinations using saturated solutions, some of the water vapor was allowed to escape to maintain the head space required. The volume of the head space was not controlled during the determination with decreasing temperatures.

EXPERIMENTAL RESULTS

Solubility Data. Solubility data are presented in Figure 2. The average values are plotted and show the close agreement obtained by the three techniques. Values from Seidell (4) for temperature below 220° F. are included in the plotted data.

The results are interesting in several respects. First, the solubility curve shows a maximum value at about 240° F. and a minimum at about 480° F. and at room temperature. A plot of mole fraction of lithium hydroxide content of saturated solution against temperature shows a more abrupt break in the solubility curve than is evident in Figure 2. A sudden drop in solubility occurs near 250° F. and a rapid increase near 500° F. It is likely that the first break in the curve is related to the phase change from the monohydrate to the anhydrous salt. Other salts (such as lithium carbonate, sodium sulfate, and calcium sulfate) also exhibit inverse solubility as a function of temperature.

The cause for the rise in solubility at 500° F. is less easily explained.

The data also show that increasing the temperature as high as 650° F. did not greatly affect the over-all solubility of lithium hydroxide. For example, values range from a minimum of about 12.7 grams of LiOH per 100 grams of H₂O at room temperature to a maximum of only about 17.7 grams at 240° F.

In contrast to these results, the solubility values of sodium hydroxide show a rapid and fairly uniform increase as temperatures are raised. Values from the *International Critical Tables (1)* and from Seidell are presented in Table I for comparison with those for lithium hydroxide obtained in the present study. At 140° F., the solubility of sodium hydroxide is about 20 times that for lithium hydroxide; at 375° F., it is amost 35 times greater; at 563° F., it is about 200 times greater.

Vapor-Pressure Data. The vapor pressures, measured for a saturated lithium hydroxide solution and for solutions containing 5 and 9.4 grams of LiOH per 100 grams of H₂O, are presented in Table II. The values for the depression of the vapor pressure of water (Δp) as affected by the

Table I. Solubility of Hydroxides in Water at Elevated Temperatures^a

	Soly., $G./100$ G. H_2O				
Temp., ° F.	LiOH	NaOH			
140	13.8	292			
176	15.3	314			
194	16.5				
212	17.5	328			
248	17.7	364			
284	16.8	392			
302	16.6				
320	16.0	424			
356	15.2	464			
374	14.7	496			
402	14.2	600			
509	13.5	1067			
563	14.1	2930			
611	15.0	Melting point			
^a Present study, 1 and 4.					

Table II. Vapor Pressure of Lithium Hydroxide Solutions

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		A				A				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Vapor Press.	-	Vapor-Press.		Vapor Press.	D	Vapor-Press.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H_2O (Steam-		Depression		H_2O (Steam-	B Venen Drees	Depression		
	T • E	Table Data),	Vapor Press.	$(A - B = \Delta p),$	Tomn ∘ F	DSIA	vapor Press.	$(A - B = \Delta p),$		
3.4.6. LOOH per 100 C. H.O (392 modal) 9.4.6. LOOH per 100 C. H.O (392 modal) Determining: Determining: Determining: Colspan="2">Determining: 303 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 1.528 2.5214 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td>1 emp., ° F.</td><td>F.5.1.A.</td><td>50m., P.S.I.A.</td><td>F.5.1.</td><td>remp., r.</td><td>1,5.1,A.</td><td>SUII., 1.S.I.A.</td><td>1.0.1.</td></th>	<td>1 emp., ° F.</td> <td>F.5.1.A.</td> <td>50m., P.S.I.A.</td> <td>F.5.1.</td> <td>remp., r.</td> <td>1,5.1,A.</td> <td>SUII., 1.S.I.A.</td> <td>1.0.1.</td>		1 emp., ° F.	F.5.1.A.	50m., P.S.I.A.	F.5.1.	remp., r.	1,5.1,A.	SUII., 1.S.I.A.	1.0.1.
According: Descenting: 338 70 690 1 612 1926 1164 65 365 109 232 234 18 690.5 122 1674 46 365 232 234 18 490.5 122 1674 46 434 460.5 122 1674 46 434 444 405.5 122 1674 44 444 405 360.6 316 367 214.1 18 548 1022 667 61 316 55 29 33 44 604 1710 1630 90 328 23 4 605.5 2214 264 91 307.5 70 30 34 655.1 1310 144 130 201.9 30 14 41 655.1 1301 124 90 356 136 144 12 656.1 <td>5</td> <td>G. LiOH per 100 C</td> <td>$H_2O (2.09 \text{ mol})$</td> <td>al)</td> <td>9.4</td> <td>4 G. LiOH per 100</td> <td>$G. H_2O (3.92 m)$</td> <td>olal)</td>	5	G. LiOH per 100 C	$H_2O (2.09 \text{ mol})$	al)	9.4	4 G. LiOH per 100	$G. H_2O (3.92 m)$	olal)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ascending:				Descending:					
	238	94	23	1	623	1826	1732	94		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303	$\overline{70}$	69	ĩ	612	1686	1609	77		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	363	159	156	3	572	1247	1185	62		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	399.5	245	234	11	566	1189	1134	55		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	424	322	304	18	506.5 480.5	722	674	48		
147 542 543 754 144 163 543 1028 967 64 316 80 76 9 543 1028 967 64 316 80 76 9 549 1588 1484 87 Saturated Lithium Hydroxide 664 310 36 32 4 664 1710 1620 90 Accending: 666 32 34 4 687.5 2213 2440 103 261 36 32 4 687.5 2240 2709 131 235.5 51 46 5 683.5 1275 2215 2464 104 325.5 131 144 6 633.1 1440 1834 106 383 156 144 121 22 5 131 144 12 131 137 134 40 144 384 40 141 124	438	373	302	21	480.5	343	312	31		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	440	403 534	489	45	396	237	214	23		
546 1028 967 61 316 85 76 9 644 1384 1284 827 Saturated Lithium Hydroxide 669 2515 2424 91 Ascending: 672.6 2515 2424 91 Ascending: 3 672.6 2514 2404 110 263 37 33 4 686.5 2714 2404 110 263 37 33 4 666.5 221.6 1104 349 133 124 9 661.5 21.0 1104 349 133 124 9 673 1364 17 388 241 187 261 673 1310 1224 86 333 355 318 37 674 458 558 50 446 433 355 318 37 675 1048 383 38 528	513	765	710^{-100}	55	362	157	141	16		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	548	1028	967	61	316	85	76	9		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	580	1327	1259	68	251	30	28	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	584	1368	1286	82						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	599 604	1710	1620	90		Saturated Lith	ium Hydroxide			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	669	2515	2424	91 91	Ascending:					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	672.5	2574	2469	103	261	.36	32	4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	680.5	2714	2604	110	263	37	33	$\overline{4}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	687.5	2840	2709	131	273.5	45	41	4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Descending:				282	51	46	5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	683	2763	2634	129	307.5	75	70	b		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	650.5	2215	2109	104	349	133		9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	631	1940	1834	106	363	158	146	12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	593	1465	1368	97	387	213	187	26		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	563	1310	1224	80 77	398	241	212	29		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	550.5	1048	984	64	415	281	251	30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	529	878	819	59	433	374	310	40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	504	706	656	50	456	431	384	47		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	484	588	538	50 45	470	515	462	48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	473	529 471	404 429	40	490	622	561	61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	450	423	385	38	511 528	752	682 701	70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	441	386	354	32	543	987	904	83		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	433	355	329	26	558	1115	1029	86		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	423	319	303	16 17	566	1189	1094	95		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	413	260	209	15	574	1266	1161	105		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	384	205	194	11	078 581	1307	1199	108		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	359	151	144	7	620	1786	1664	122		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	334	108	102	6	641	2074	1949	125		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	307	74 60	70	4	678.5	2680	2534	146		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{233}{277}$	47	46	1	682	2745	2594	151		
9.4 G. LiOH per 100 G. H ₂ O (3.92 molal)Descending:Ascending:684.527902644146275454416832763261914428956.5551.567628362496140298656326712549241413531280782666246423291353601531476653.522652136129379193181126522239211412539523321716635198818721164183032832061316981589109435364340245881511131299447102095763555118510998654710209676355511851099865471020967635551185109986547102096763555112410646051110549649054710209645659514871374113518.578273448613170515891165107446945064421282094134480.556852246 </td <td>237</td> <td>22.5</td> <td>22</td> <td>$\bar{0.5}$</td> <td>688</td> <td>2800</td> <td>2649</td> <td>151</td>	237	22.5	22	$\bar{0.5}$	688	2800	2649	151		
Ascending:Generating: 275 45 44 1 684.5 2790 2644 146 289 56.5 55 1.5 676 2636 2496 140 298 65 63 2 671 2549 2414 135 312 80 78 2 666 2464 2329 135 354 141 135 6 658 2323 2201 132 360 153 147 6 653.5 2265 2136 129 379 193 181 12 652 2239 2114 125 395 233 217 16 639 2045 1922 123 406 265 248 17 635 1988 1872 116 418 303 283 20 613 1698 1589 109 457 663 628 35 575 1276 1189 87 531 892 849 43 566.5 1185 1099 86 547 1020 957 63 559 1124 1064 60 511 1054 964 90 547 1020 964 56 595 1487 1374 113 518.5 782 734 48 613 1705 1589 116 510 744 694 55 689 2876 2722 <	9	4 G. LiOH per 100	G. H ₂ O (3.92 m	olal)	Derendine	2001	2000	100		
Ascending.684.527902644146275454416832763261914428956.5551.567626362496140298656326712549241413531280782666246423291353541411356653.52265213612936015314766522239211412539523321716652223921141253952332171663519881872116418303283206131698158910943536434024588151113129949766362835575127611898753189284943566.51185109986547102095763559112410646051110549649054710209645659514871374113518.578273448613170515891165107446945059514871374113518.5782734486131705158911651074469450	A secondin m	.1 0.1 morr per 100	0.11/0 (0.02 11	()	Descending:					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ascending:				684.5	2790	2644	146		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275	45	44	1	683 676	2763	2619	144		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	289	00.0 65	55 63	1.5	671	2549	2430	135		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312	80	78	$\frac{1}{2}$	666	2464	2329	135		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	354	141	135	6	658	2323	2201	132		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360	153	147	6	653.5	2265	2136	129		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	379	193	181 217	12	639	2045	2114 1922	125		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	406	200	248	10	635	1988	1872	116		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	418	303	283	20	613	1698	1589	109		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	435	364	340	24	588	1511	1312	99		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	497	663	628	35	575 566 5	1276	1189	87		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	531	892	849 957	43	559	1100	1099	60 60		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511	1054	964	90	547	1020	964	56		
	595	1487	1374	113	518.5	782	734	48		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	613	1705	1589	116	510	744	694	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	644	2128	2094	134	480.5 464	568 486	522	46		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	004.0 667	2280 2478	2139 2330	141	452.5	433	396	$\frac{42}{37}$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	689	2876	2722	154	442	389	354	35		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Descending				433	355	322	33		
	Descending.	0769	9610	1 4 77	408 391	271	254	17 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	084 658	2103 2330	2010	141	333	107	101	5 6		
644.5 2133 2028 105 275 45 41 4	649	2193	2079	114	320.5	90	84	6		
	644.5	2133	2028	105	275	45	41	4		

Figures 3, 4, and 5. Depression of vapor pressure

addition of lithium hydroxide are also presented in the table and graphically illustrated in Figures 3, 4, and 5. Included in the curves are calculated values for Δp obtained by Raoult's law, $P_1 = P_o(N/N + n)$. Values for sodium hydroxide, as taken from the International Critical Tables (1), are presented for the same molalities and weight per cent concentrations as those used for lithium hydroxide. Values were obtained on an ascending temperature schedule and also on a descending schedule.

Table II shows that the vapor depression of the 2.09molal lithium hydroxide solution amounts to about 130 p.s.i. at about 685° F. In Figure 3, these Δp values are compared with those for sodium hydroxide.

Lithium hydroxide causes somewhat more depression than does sodium hydroxide at equal concentrations by weight. At equal molalities, however, sodium hydroxide causes more lowering of pressure.

The distortion in the Δp curve (Figure 3) near 480° F. occurs at the same temperature as the minimum in the solubility curve (Figure 2). The cause of this effect is not understood and the occurrence may be entirely coincidental.

Figure 3 shows that the deviation from Raoult's law is positive and appreciable for 2.09-molal lithium hydroxide solutions. On the other hand, it is negative for the more concentrated solutions. These data are strengthened by the report from the Bettis Laboratory (3) on the basis of conductivity measurements that the ionization of LiOH decreases as the temperature is raised. An equally valid explanation is that variation in association phenomena causes the effect noted.

Table II and Figures 4 and 5 show that the vapor depression for a 3.92-molal solution and for a saturated solution (about 6.25 molal) of lithium hydroxide amounts to about 154 and 158 p.s.i., respectively, at about 689° F. In general, over the entire temperature range studied, the saturated solution showed slightly greater vapor-depression values than did the 3.92-molal solution.

These colligative properties of lithium hydroxide solutions are dependent on the activities of the species as well as on the degree of dissociation and association. Thus, the positive and negative deviations from Raoult's law noted for the various solutions can probably be explained. The data are not sufficiently precise to furnish a more complete interpretation.

The Δp values for sodium hydroxide are much higher than those for the lithium hydroxide solutions. Table III summarizes the values for lithium and sodium hydroxide at three concentrations expressed as molality, grams per

Table III. Vapor-Pressure-Depression Data for Lithium and Sodium Hydroxide Solutions of Equivalent Concentrations^a

Concentration	LiOH	N	aOH	LiOH	N	OH	LiOH	N	aOH
G. per 100 G. H ₂ O Weight per cent Molality	5 4.76 2.09	$5 \\ 4.76 \\ 1.25$	8.4 7.83 2.09	10 8.59 3.92	$10 \\ 8.59 \\ 2.35$	$15.6 \\ 13.5 \\ 3.92$	$15^{\flat} \\ 13.04 \\ 6.25$	$15 \\ 13.04 \\ 3.75$	$25 \\ 20.0 \\ 6.25$
Vapor-pressure depression (Δp) , p.s.i.									
248° F.	1	1.2	1.95	1	2.25	4	4	3.6	6.7
320° F.	4.5	3.6	6.3	3	7.15	11.5	7	11.2	18.8
392° F.	12.5	9	14.5	13	16	27	18	26	44
482° F.	35.5	25	38	34	42.5	69	50	67	107
572° F.	73	52	83	74	93	147	90	144	226
662° F.	120	98	158	140	177	280	137	275	433

^a NaOH data calculated from vapor-pressure data in *International Critical Tables*; LiOH data calculated from smooth curves in,Figures

3, 4, and 5 of this report. ^b Saturated, approximately.

100 grams H_2O , and weight per cent. At 662° F., the vapor depression for a 6.25-molal sodium hydroxide solution is about three times as great as for a lithium hydroxide solution of the same molal strength. More dilute solutions showed smaller differences. In other words, sodium hydroxide shows a greater lowering of vapor pressure than does lithium hydroxide at the same molal concentrations. In addition, the extent of this difference increases as the concentration of the solution rises. Data for sodium hydroxide, as given in the *International Critical Tables* (1), have been confirmed recently by Kiyama and Kitahara (2).

ACKNOWLEDGMENT

Herman F, Karnes, of the G.E. Knolls Atomic Power Laboratory, maintained liaison on this project. His interest and suggestions are greatly appreciated. The authors also wish to thank H.A. Pray of Battelle for his valuable advice.

LITERATURE CITED

- (1) International Critical Tables, McGraw-Hill, New York.
- (2) Kiyama, R., Kitahara, S., Rev. Phys. Chem. Japan 27, 48 (1957).
- (3) Pement, F.W., U. S. At. Energy Comm. WAPD-BT-16 112 (1959).
- (4) Seidell, A., "Solubilities of Inorganic and Metal Organic Compounds," 3rd. Ed., Vol. 1, Van Nostrand, New York, 1940.

RECEIVED for review December 8, 1961. Accepted June 11, 1962. Work conducted at the Battelle Memorial Institute as a program of assistance to the Knolls Atomic Power Laboratory under AEC Contract W-7405-Eng-92.

Vapor Pressure of Glycerol

GEORGE R. ROSS¹ and WILLIAM J. HEIDEGER

Department of Chemical Engineering, University of Washington, Seattle 5, Wash.

RECENT INTEREST in the properties of highly polar compounds (1, 5, 10) has indicated the lack of reliable information concerning the vapor pressure of glycerol in the range from room temperature to about 100° C. The accepted high temperature values were obtained by Stedman (9) from an extrapolation of data on the equilibrium concentrations of glycerol in water solutions at known temperatures and pressures. He plotted partial pressure of glycerol against total pressure and extrapolated to the point where the two were equal. At 70° C., however, only two points were available; at 60° and again at 50° only one point is given. The latter two were at very low glycerol concentration and thus the vapor pressures reported represent only an estimate of the proper values.

Low temperature data available are the single effusion value obtained by Wyllie (11) at 18° C. for glycerol of unknown purity and the effusion results obtained by Zil'berman-Granovskaya (12), after repeated distillations and thus possibly subject to thermal decomposition. The heat of vaporization calculated from this latter study was only 4.9 kcal./gram-mole, less than one third of the value expected for such a highly polar substance (1). Filosofo and co-workers (4) measured the pressure of glycerol atmospheres with a fiber vacuum gage at three temperatures below 50° C. and obtained values in reasonable agreement with the extrapolation of Stedman's data.

EXPERIMENTAL

Method Selected. Because of the extremely low volatility of glycerol at room temperature, Knudsen's vapor effusion technique (6) was chosen for vapor pressure determination. The Knudsen equation relates the rate of efflux of a vapor through an orifice to the pressure differential, provided the major dimension of the opening is much less than the mean free path of a molecule in the gas phase.

$$-\frac{1 \text{ d } W}{A_{\circ} \text{ d} \theta} = \left(\frac{M}{2\pi RT}\right)^{1/2} \left(P'_{v} - P\right)$$
(1)

Clausing (3) has calculated the probability that molecules entering a cylindrical canal in free molecule flow will reach the exit without being reflected back through the entrance. Such efficiency factors may be evaluated both for the orifice itself and for the body of the cell. Ross has shown (8)that for a cell with diameter equal to height the cell body correction is negligible, and the cell pressure may be related to the vapor pressure as in Equation 2

$$P_v = (1 + W_b A_o / \alpha A_s) P'_v \tag{2}$$

where α is the evaporation coefficient and the effusion is assumed to be into very high vacuum. A value for α of 0.05 was used in this correction in accord with the most recently reported coefficient for glycerol surfaces (5). This calculation (Table I, column 5) is not sensitive to the value of α used.

When the orifice area in Equation 1 is modified by the Clausing factor, these two equations may be combined to yield the final form used to calculate vapor pressures.

$$P_{v} - P = -\frac{\mathrm{d}W}{\mathrm{d}\theta} \left(\frac{1 + \frac{W_{b}A_{o}}{\alpha A_{s}}}{W_{b}A_{o}}\right) \left(\frac{2\pi RT}{M}\right)^{1/2}$$
(3)

Apparatus and Procedure. The effusion systems used in this work, similar in design to those of Bradley (2), are shown schematically in Figure 1. The basic components of each system were the spring case, quartz spring, effusion cell, liquid nitrogen cold trap, diffusion pump, and mechanical vacuum pump.

¹ Present address; Army Chemical Center, Md.